
T E C H N O L O G Y G U I D E S T1 Hardware
T2 Software
T3 Data and Databases
T4 Telecommunications
T5 The Internet and the Web
T6 Technical View of System Analysis and Design�

T6.1

T E C H N O L O G Y G U I D E

6
A Technical View of System
Analysis and Design

T6.1
Developing an IT Architecture

T6.2
Overview of the Traditional

SDLC

T6.3
Alternative Methods and Tools

for Systems Development

T6.4
Component-Based

Development and Web
Services

t06.qxd 01/27/2005 08:37PM Page T6.1 EQA

T6.2 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

An IT architecture is a conceptual framework for the organization of the IT
infrastructure and applications. It is a plan for the structure and integration of
IT resources and applications in the organization.

Once the corporate strategy team or steering committee decides on potential
applications, an architecture must be developed. Koontz (2000) suggested a six-
step process for developing an IT architecture. These steps, described below, con-
stitute a hierarchy of IT architecture.

Step 1: Business goals and vision. This step, in which the system analyst re-
views the relevant business goals and vision, is sometimes referred to as
“business architecture” (see Chapters 2 and 14).

Step 2: Information architecture. In this step a company analyst defines the
information necessary to fulfill the objectives of Step 1. Here, one should ex-
amine each objective and goal, identify the information currently available,
and determine what new information is needed. All potential users need to
be involved.

Step 3: Data architecture. Once you know what information must be
processed, you need to determine a data architecture—that is, exactly what
data you have and what you want to get from customers, including Web-
generated data. Of special interest is the investigation of all data that flows
within the organization and to and from your business partners.

The result of your investigation will probably show that data are every-
where, from data warehouses to mainframe files to Excel files on users’ PCs.
You need to conduct an analysis of the data, understanding its use, and ex-
amine the need for new data. This is when you need to think about how to
process this data and what tools to use. If large amounts of data are used,
tools such as Microsoft Transaction Server, Tuxedo, or CICS for mainframe
data should be considered. Also, think about data mining and other tools. All
this analysis needs to be done with an eye toward security and privacy.

Step 4: Application architecture. At this point, you define the components or
modules of the applications that will interface with the required data defined
in Step 3. In this step you will build the conceptual framework of an applica-
tion, but not the infrastructure that will support it. An example is shown in
Figure T6.1.

Many vendors, such as IBM, Oracle, and Microsoft, offer sophisticated IT
application platforms that can significantly reduce the amount of code that
programmers need to write. These application platforms also explain how
the application should be structured. In this step, you can decide on a spe-
cific vendor-defined application architecture, such as Microsoft Distributed
Network Architecture (DNA).

Other factors that must be considered are scalability, security, the num-
ber and size of servers, and the networks. The need to interface with legacy
systems and with sales, ERP, accounting, and human resources data must be
considered. In addition the ability to read real-time data is also important.

The major output of this step is to define the software components that
meet the data requirements. For example, to deal with updated, real-time
information, one may consider IBM’s MQSeries or Microsoft MSMQ.

A Six-Step Process

T6.1 DEVELOPING AN IT ARCHITECTURE

t06.qxd 01/27/2005 08:37PM Page T6.2 EQA

T6.1 DEVELOPING AN IT ARCHITECTURE T6.3

Step 5: Technical architecture. During the previous steps, designers informally
considered the technical requirements. In this step, they must formally exam-
ine the specific hardware and software required to support the analysis in the
previous steps. An inventory of the existing information resources is made,
and an evaluation of the necessary upgrades and acquisitions is performed.

At this stage, designers must also examine the middleware needed for
the application. EC applications require a considerable amount of transaction
processing software. The more scalability and availability required, the more
you need to invest in additional application servers and other hardware and
software.

When selecting a programming language, designers may consider Java,
Visual Studio, C11, CGI, and even COBOL, depending on the application.
Also in this step, the operating systems, transaction processors, and network-
ing devices required to support the applications must be decided on. Obvi-
ously, you want to leverage your existing IT resources, but this may not be
the optimal approach.

Step 6: Organizational architecture. An organizational architecture deals
with the human resources and procedures required by Steps 1 through 5. At
this point, the legal, administrative, and financial constraints should be ex-
amined. For example, a lack of certain IT skills on your team may require
hiring or retraining. Partial outsourcing may be a useful way to deal with
skill deficiencies.

In the worst-case scenario, you outsource the entire job, but you can
give the architecture to the vendor as a starting point. Also, vendor selection
can be improved if the architectures (business, information, data, applica-
tion, and technical) are considered.

Creating IT architecture may be a lengthy process, but it is necessary to go
through it. You may want to develop metrics to help you to track the effec-
tiveness of your IT architecture, and you certainly need to document the process
and output of each step.

Once the IT architecture has been decided on, a development strategy can
be formulated.

Legacy
system

Database LAN

B2B
B2B

B2C Application Server

Travel Agency
Application Integration

CRM
System

Corporate
clients

Individual
customers

Car rental

CUSTOMERS SUPPLIERS

Internet orInternet or
ExtranetExtranet

Internet or
Extranet

Intranet

Airlines
ERP
system Hotels

Firewall

Firewall

Internet

Web
Server

FIGURE T6.1 Architec-
ture of an online travel
agency.

Conclusion

t06.qxd 2/17/05 8:51 AM Page T6.3 EQA

T6.4 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

The systems development life cycle (SDLC) is the traditional systems devel-
opment method used by organizations for large IT projects such as IT infra-
structure. The SDLC is a structured framework that consists of sequential
processes by which information systems are developed. As shown in Figure T6.2,
these processes include: investigation, analysis, design, programming, testing,
implementation, operation, and maintenance. The processes, in turn, consist of
well-defined tasks. Large projects typically require all the tasks, whereas smaller
development projects may require only a subset of the tasks.

Other models for the SDLC may contain more or fewer than the eight stages
we present here. The flow of tasks, however, remains largely the same, regard-
less of the number of stages. In the past, developers used the waterfall approach
to the SDLC, in which tasks in one stage were completed before the work pro-
ceeded to the next stage. Today, systems developers go back and forth among the
stages as necessary.

Within the waterfall approach, there is an iterative feature. Iteration is the
revising of the results of any development process when new information makes
this revision desirable. Iteration does not mean that developments should be
subjected to infinite revisions, which would never allow systems to be imple-
mented and utilized. It does mean that developers must evaluate any new devel-
opment information they come across to determine whether it warrants causing
revisions to the existing development. It is especially important for e-commerce
development because EC systems must be constantly evolving to meet new
demands of their users and to stay ahead of the competition.

Systems development projects produce desired results through team efforts.
Development teams typically include users, systems analysts, programmers, and
technical specialists. Users are employees from all functional areas and levels of

FIGURE T6.2 An eight-
stage system develop-
ment life cycle (SDLC).

Go Back to a Previous Stage or Stop

(4) Programming

(5) Testing

(6) Implementation

(7) Operation

(8) Maintenance

(1) Systems Investigation

(2) Systems Analysis

(3) Systems Design

T6.2 OVERVIEW OF THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE

t06.qxd 2/17/05 8:51 AM Page T6.4 EQA

T6.2 OVERVIEW OF THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE T6.5

the organization who will interact with the system, either directly or indirectly.
Systems analysts are information systems professionals who specialize in ana-
lyzing and designing information systems. Programmers are information systems
professionals who modify existing computer programs or write new computer
programs to satisfy user requirements. Technical specialists are experts on a
certain type of technology, such as databases or telecommunications. All people
who are affected by changes in information systems (e.g., users and managers)
are known as systems stakeholders, and are typically involved by varying
degrees and at various times in the systems development.

In the remainder of this section, we will look at each of the processes
(phases) in the eight-stage SDLC.

Systems development professionals agree that the more time invested in under-
standing the business problem to be solved, in understanding technical options
for systems, and in understanding problems that are likely to occur during
development, the greater the chance of successfully solving the problem. For
these reasons, systems investigation begins with the business problem (or business
opportunity).

Problems (and opportunities) often require not only understanding them
from the internal point of view, but also seeing them as organizational partners
(suppliers or customers) would see them. Another useful perspective is that of
competitors. (How have they responded to similar situations, and what outcomes
and additional opportunities have materialized?) Creativity and out-of-the-box
thinking can pay big dividends when isolated problems can be recognized as sys-
temic failures whose causes cross organizational boundaries. Once these per-
spectives can be gained, those involved can also begin to better see the true scope
of the project and propose possible solutions. Then, an initial assessment of these
proposed system solutions can begin.

FEASIBILITY STUDIES. The next task in the systems investigation stage is the
feasibility study. The feasibility study determines the probability of success of
the proposed project and provides a rough assessment of the project’s techni-
cal, economic, organizational, and behavioral feasibility. The feasibility study is
critically important to the systems development process because, done properly,
the study can prevent organizations from making costly mistakes (like creating
systems that will not work, will not work efficiently, or that people cannot or
will not use). The various feasibility analyses also give the stakeholders an
opportunity to decide what metrics to use to measure how a proposed system
(and later, a completed system) meets their various objectives.

Technical Feasibility. Technical feasibility determines if the hardware, soft-
ware, and communications components can be developed and/or acquired to solve
the business problem. Technical feasibility also determines if the organization’s
existing technology can be used to achieve the project’s performance objectives.

Economic Feasibility. Economic feasibility determines if the project is an
acceptable financial risk and if the organization can afford the expense and time
needed to complete the project. Economic feasibility addresses two primary
questions: Do the benefits outweigh the costs of the project? Can the project be
completed as scheduled?

Three commonly used methods to determine economic feasibility are return
on investment (ROI), net present value (NPV), and breakeven analysis. The first

Systems
Investigation

(Step 1)

t06.qxd 2/17/05 8:51 AM Page T6.5 EQA

T6.6 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

two were discussed in Chapter 13: Return on investment is the ratio of the
net income attributable to a project divided by the average assets invested in
the project. The net present value is the net amount by which project bene-
fits exceed project costs, after allowing for the cost of capital and the time value
of money. Breakeven analysis determines the point at which the cumulative
cash flow from a project equals the investment made in the project.

Determining economic feasibility in IT projects is rarely straightforward, but
it often is essential. Part of the difficulty stems from the fact that benefits often
are intangible (as discussed in Chapter 13). Another potential difficulty is that
the proposed system or technology may be “cutting edge,” and there may be no
previous evidence of what sort of financial payback is to be expected. Example:
ROI analysis at Sears.

Sears Demands ROI Analysis for Handheld
Computer System Dennis Honan, an IS executive at retailer Sears, Roebuck &
Co., is a veteran of what he calls the company’s “ROI culture.” Honan, VP of In-
formation Systems for Sears’s Home Services business, got approval to spend
some $20 million to equip the unit’s 14,000-person service staff with handheld
PCs. The overriding goal of the project was to improve the efficiency of Sears’s
service technicians. Not only were they to be given handheld computers, but the
devices would also be linked by wireless WANs to Sears’s databases. Honan pro-
jected an average 6 to 8 percent gain in the technicians’ productivity, mainly be-
cause the setup would let them request price estimates, check availability for
appliance parts, place orders, receive software upgrades, and get job-schedule
updates from wherever they were working. That, in turn, would let technicians
complete more calls a day.

Also, when customers cancel or reschedule service calls—something that
happens up to 100 times a day in some districts—technicians and dispatchers
could learn about the changes and make schedule adjustments almost immedi-
ately. In the past, they’d be paged, have to find a pay phone, then wait for in-
structions. “Here was an opportunity to computerize everything, eliminate paper
service orders, and have the ability to communicate almost instantaneously with
the technicians,” said Vince Accardi, director of process management.

The project sounded good enough to go, but presenting a formal ROI analy-
sis was “absolutely essential” to the approval process, Honan said. Added Joseph
Smialowski, Sears’s senior VP and CIO and a key player in the approval of all
types of investments at the retailer, “All our projects—whether it’s opening new
stores or buying new systems—have to compete for the capital that’s available.
There are really no projects that can slip through without going through a quan-
titative analysis.” To justify the handheld PC initiative, Home Services managers
used a cost–benefit measure to determine net annual savings. To illustrate the
longer-term benefits of the investment, they also calculated the net present value
(NPV) of cash flows over a five-year period.

Home Services presented the expected benefits in terms of expected annual
savings for Sears. The project proposal then went through a multilevel evalua-
tion process: first within Home Services, and next at the company’s strategic
planning level. The plan was evaluated for technical soundness, accuracy of the
cost estimates, and to see if it fit Sears’s business model and enterprise architec-
ture. The proposal then went to Sears’s finance committee, which includes the

E X A M P L E :

t06.qxd 2/17/05 8:51 AM Page T6.6 EQA

T6.2 OVERVIEW OF THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE T6.7

company’s CEO, the chief financial officer (CFO), the CIO, and two business
presidents. They approved the project. It was then rolled out, first in test mar-
kets, then district by district. Source: B. Violino, “Sears, Roebuck, & Co. Productiv-
ity Gains from Mobile Computing,” informationweek.com/679/79iuro6.htm (1998).

Organizational Feasibility. Organizational feasibility has to do with an orga-
nization’s ability to accept the proposed project. Sometimes, for example, organ-
izations cannot accept a financially acceptable project due to legal or other
constraints. In checking organizational feasibility, one should consider the orga-
nization’s policies and politics, including impacts on power distribution, business
relationships, and internal resources availability.

Behavioral Feasibility. Behavioral feasibility addresses the human issues
of the project. All systems development projects introduce change into the
organization, and people generally fear change. Overt resistance from employ-
ees may take the form of sabotaging the new system (e.g., entering data incor-
rectly) or deriding the new system to anyone who will listen. Covert resistance
typically occurs when employees simply do their jobs using their old methods.

A more positive and pragmatic concern of behavioral feasibility is assessing
the skills and training needs that often accompany a new information system.
In some organizations, a proposed system may require mathematical or lin-
guistic skills beyond what the workforce currently possesses. In others, a work-
force may simply need additional skill building rather than remedial education.
Behavioral feasibility is as much about “can they use it” as it is about “will they
use it.”

After the feasibility analysis, a “Go/No-Go” decision is reached. The func-
tional area manager for whom the system is to be developed and the project
manager sign off on the decision. If the decision is “No-Go,” the project is put
on the shelf until conditions are more favorable, or the project is discarded. If
the decision is “Go,” then the systems development project proceeds and the
systems analysis phase begins.

Once a development project has the necessary approvals from all participants,
the systems analysis stage begins. Systems analysis is the examination of the busi-
ness problem that the organization plans to solve with an information system.
This stage defines the business problem, identifies its causes, specifies the solu-
tion, and identifies the information requirements that the solution must satisfy.
Understanding the business problem requires understanding the various processes
involved. These can often be quite complicated and interdependent. (Note that
this stage is similar to Step 1 described in Section T6.1. The difference is that the
steps in that section could apply to any type of system acquisition; here, the
process refers specifically to building applications.)

Organizations have three basic solutions to any business problem relating
to an information system: (1) Do nothing and continue to use the existing sys-
tem unchanged. (2) Modify or enhance the existing system. (3) Develop a new
system. The main purpose of the systems analysis stage is to gather information
about the existing system, in order to determine which of the three basic solu-
tions to pursue and to determine the requirements for an enhanced or new sys-
tem. The end product (the “deliverable”) of this stage is a set of information
requirements.

Systems Analysis
(Step 2)

t06.qxd 2/17/05 8:51 AM Page T6.7 EQA

T6.8 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

Arguably the most difficult task in systems analysis is to identify the spe-
cific information requirements that the system must satisfy. Information require-
ments outline what information, how much information, for whom, when, and
in what format. Systems analysts use many different techniques to obtain the
information requirements for the new system. These techniques include struc-
tured and unstructured interviews with users and direct observation. Structured
interviews pose questions written in advance. In unstructured interviews, the
analyst does not have predefined questions but uses experience to elicit the
problems of the existing system from the user. With direct observation, analysts
observe users interacting with the existing system.

In developing information requirements, analysts must be careful not to let
any preconceived ideas they have interfere with their objectivity. Further, ana-
lysts must be unobtrusive, so that users will interact with the system as they
normally would.

There are problems associated with eliciting information requirements,
regardless of the method used by the analyst. First, the business problem may
be poorly defined. Second, the users may not know exactly what the problem
is, what they want, or what they need. Third, users may disagree with each
other about business procedures or even about the business problem. Finally,
the problem may not be information related, but may require other solutions,
such as a change in management or additional training.

The systems analysis stage produces the following information: (1) Strengths
and weaknesses of the existing system. (2) Functions that the new system must
have to solve the business problem. (3) User information requirements for the
new system. Armed with this information, systems developers can proceed to
the systems design stage.

There are two main approaches in systems analysis: the traditional (struc-
tured) approach, and the object-oriented approach. The traditional approach
emphasizes “how,” whereas the object-oriented approach emphasizes “what.”

Systems analysis describes what a system must do to solve the business prob-
lem, and systems design describes how the system will accomplish this task. The
deliverable of the systems design phase is the technical design that specifies the
following:

● System outputs, inputs, and user interfaces

● Hardware, software, databases, telecommunications, personnel, and proce-
dures

● How these components are integrated

This output represents the set of system specifications.
Systems design encompasses two major aspects of the new system: Logical

system design states what the system will do, using abstract specifications.
Physical system design states how the system will perform its functions, with
actual physical specifications. Logical design specifications include the design of
outputs, inputs, processing, databases, telecommunications, controls, security,
and IS jobs. Physical design specifications include the design of hardware, soft-
ware, database, telecommunications, and procedures. For example, the logical
telecommunications design may call for a wide-area network connecting the
company’s plants. The physical telecommunications design will specify the types
of communications hardware (e.g., computers and routers), software (e.g., the

Systems Design
(Step 3)

t06.qxd 01/27/2005 08:37PM Page T6.8 EQA

T6.2 OVERVIEW OF THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE T6.9

network operating system), media (e.g., fiber optics and satellite), and band-
width (e.g., 100 Mbps).

When both these aspects of system specifications are approved by all par-
ticipants, they are “frozen.” That is, once the specifications are agreed upon,
they should not be changed. However, users typically ask for added functional-
ity in the system (called scope creep). This occurs for several reasons: First, as
users more clearly understand how the system will work and what their infor-
mation and processing needs are, they see additional functions that they would
like the system to have. Also, as time passes after the design specifications are
frozen, business conditions often change, and users ask for added functionality.
Because scope creep is expensive, project managers place controls on changes
requested by users. These controls help to prevent runaway projects—systems
development projects that are so far over budget and past deadline that they
must be abandoned, typically with large monetary loss.

Systems developers utilize the design specifications to acquire the software
needed for the system to meet its functional objectives and solve the business
problem. As discussed in Chapter 13, organizations may buy the software or
construct it in-house.

Although many organizations tend to purchase packaged software, many
other firms continue to develop custom software in-house. For example, Wal-
Mart and Eli Lilly build practically all their software in-house. The chief benefit
of custom development is systems that are better suited than packaged applica-
tions to an organization’s new and existing business processes. For many organ-
izations, custom software is more expensive than packaged applications. However,
if a package does not closely fit the company’s needs, the savings are often diluted
when the information systems staff or consultants must extend the functionality
of the purchased packages.

If the organization decides to construct the software in-house, then program-
ming begins. Programming involves the translation of the design specifications
into computer code. This process can be lengthy and time-consuming because
writing computer code remains as much an art as a science. Large systems devel-
opment projects can require hundreds of thousands of lines of computer code and
hundreds of computer programmers. In such projects, programming teams are
used. These teams often include functional area users to help the programmers
focus on the business problem at hand.

In an attempt to add rigor (and some uniformity) to the programming process,
programmers use structured programming techniques. These techniques improve
the logical flow of the program by decomposing the computer code into modules,
which are sections of code (subsets of the entire program). This modular structure
allows for more efficient and effective testing because each module can be tested
by itself. The structured programming techniques include the following restrictions:

● Each module has one, and only one, function.

● Each module has only one entrance and one exit. That is, the logic in the com-
puter program enters a module in only one place and exits in only one place.

● GO TO statements are not allowed.

For example, a flowchart for a simple payroll application might look like
the one shown in Figure T6.3 (page T6.10). The figure shows the only three
types of structures that are used in structured programming: sequence, decision,

Programming
(Step 4)

t06.qxd 2/17/05 8:51 AM Page T6.9 EQA

T6.10 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

and loop. In the sequence structure, program statements are executed one after
another until all the statements in the sequence have been executed. The decis-
ion structure allows the logic flow to branch, depending on certain conditions
being met. The loop structure enables the software to execute the same pro-
gram, or parts of a program, until certain conditions are met (e.g., until the end
of the file is reached, or until all records have been processed).

As already noted, structured programming enforces some standards about
how program code is written. This approach and some others were developed
not only to improve programming, but also to standardize how a firm’s various
programmers do their work. This uniform approach helps ensure that all the
code developed by different programmers will work together. Even with these
advances, however, programming can be difficult to manage. An example of
how one company managed to track programming progress is provided next.

Belk Inc. Tracks Development Progress, Reaps Re-
wards With limited management resources available and the pressure to deploy
new business solutions quickly, measuring productivity in systems development
often becomes a low priority for many organizations. IT departments at smaller

E X A M P L E :

FIGURE T6.3 Flowchart
diagram of a payroll appli-
cation of structured pro-
gramming.

Gross pay =
hours x hr. rate

Gross pay =
salary/52

Last
record?

Hours
worked > 40?

Employee
hourly?

No

No

No

Yes

Yes

Yes

Stop

Gross pay = (40 x hr. rate) +
(# hours – 40) x (hr. rate x 1.5)

Read employee record.

t06.qxd 01/27/2005 08:37PM Page T6.10 EQA

T6.2 OVERVIEW OF THE TRADITIONAL SYSTEMS DEVELOPMENT LIFE CYCLE T6.11

companies in particular seem reluctant to institute policies to track the perform-
ance of development projects. Some companies, however, have been forced to
adopt productivity measurement methods, and are reaping rewards for doing so.

For example, national retailer Belk Inc. had to adopt productivity metrics as
a means of reducing devastating system failures. Conda Lashley, the veteran IT
consultant that Belk hired, was used to nursing client organizations through
crashes that periodically downed their systems. But nothing had prepared Lash-
ley for the failure rate at Belk. Soon after joining the company as senior VP for
systems development, Lashley discovered that Belk’s batch systems went down
an astounding 800 times a month. The Charlotte, North Carolina, outfit, a pri-
vate company with estimated annual revenue of $1.7 billion, paid a heavy price
for the constant bandaging: In 1997, Belk spent $1.1 million of its $30 million IT
budget on unplanned maintenance.

To steady the systems, Lashley instituted a series of tracking measures. Pro-
grammers began logging their time. Required software functions were carefully
counted in application development projects. Belk compared its cycle time, de-
fect rates, and productivity with competitors’ figures. And systems managers
were required to draw up blueprints for reducing the crashes—with the results
reviewed in their performance evaluations.

The transition to tracking the IT department’s performance was painful but
worthwhile. Belk’s systems became more stable—monthly disruptions dropped
to 480 incidents, a figure Lashley hoped to slash by another 30 percent. Un-
planned maintenance costs also have been brought under control, with initial
cuts in unplanned maintenance expenses of $800,000.

Thorough and continuous testing occurs throughout the programming stage.
Testing checks to see if the computer code will produce the expected and desired
results under certain conditions. Testing requires a large amount of time, effort,
and expense to do properly. However, the costs of improper testing, which could
possibly lead to a system that does not meet its objectives, are enormous.

Testing is designed to detect errors (“bugs”) in the computer code. These
errors are of two types: syntax errors and logic errors. Syntax errors (e.g., a mis-
spelled word or a misplaced comma) are easier to find and will not permit the
program to run. Logic errors permit the program to run but result in incorrect
output. Logic errors are more difficult to detect because the cause is not obvi-
ous. The programmer must follow the flow of logic in the program to deter-
mine the source of the error in the output.

To have a systematic testing of the system, we must start with a compre-
hensive test plan. There are several types of testing: In unit testing, each module
is tested alone in an attempt to discover any errors in its code. String testing puts
together several modules, to check the logical connection among them. The next
level, integration testing, brings together various programs for testing purposes.
System testing brings together all of the programs that comprise the system.

As software increases in complexity, the number of errors increases, mak-
ing it almost impossible to find them all. This situation has led to the idea of
“good-enough” software, software that developers release knowing that errors
remain in the code but believing that the software will still meet its functional
objectives. That is, they have found all the “show-stopper” bugs, errors that will
cause the system to shut down or will cause catastrophic loss of data.

Testing (Step 5)

t06.qxd 2/17/05 8:51 AM Page T6.11 EQA

T6.12 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

Implementation (or deployment) is the process of converting from the old
system to the new system. Organizations use four major conversion strategies:
parallel, direct, pilot, and phased.

In a parallel conversion, the old system and the new system operate
simultaneously for a period of time. That is, both systems process the same data
at the same time, and the outputs are compared. This type of conversion is the
most expensive, but also the least risky. Most large systems have a parallel con-
version process to lessen the risk.

In a direct conversion, the old system is cut off and the new system is
turned on at a certain point in time. This type of conversion is the least expen-
sive, but the most risky if the new system doesn’t work as planned. Few sys-
tems are implemented using this type of conversion, due to the risk involved.

A pilot conversion introduces the new system in one part of the organi-
zation, such as in one plant or in one functional area. The new system runs for
a period of time and is assessed. After the new system works properly, it is intro-
duced in other parts of the organization.

A phased conversion introduces components of the new system, such as
individual modules, in stages. Each module is assessed, and, when it works prop-
erly, other modules are introduced until the entire new system is operational.

Enterprise application integration (EAI) is often called the middleware. Inter-
faces were developed to map the major packages to a single conceptual frame-
work that guides what all these packages do and the kinds of information they
normally need to share. This conceptual framework could be used to translate
the data and processes from each vendor’s package to a common language. It
is the only way to implement collaborative supply chain sharing of information.

XML is the technology that is being used by many EAI vendors in their cross-
enterprise applications development. It can be thought of as a way for providing
variable format messages that can be shared between any two computer systems,
as long as they both understand the format (tags) that is (are) being used.

After conversion, the new system will operate for a period of time, until (like
the old system it replaced) it no longer meets its objectives. Once the new sys-
tem’s operations are stabilized, audits are performed during operation to assess
the system’s capabilities and determine if it is being used correctly.

Systems need several types of maintenance. The first type is debugging the
program, a process that continues throughout the life of the system. The second
type is updating the system to accommodate changes in business conditions. An
example would be adjusting to new governmental regulations (such as tax rate
changes). These corrections and upgrades usually do not add any new function-
ality; they are necessary simply in order for the system to continue meeting its
objectives. The third type of maintenance adds new functionality to the system—
adding new features to the existing system without disturbing its operation.

Implementation
(Step 6)

Operation and
Maintenance (Steps

7 and 8)

T6.3 ALTERNATIVE METHODS AND TOOLS FOR SYSTEMS DEVELOPMENT

Organizations use the traditional systems development life cycle because it has
three major advantages: control, accountability, and error detection. An impor-
tant issue in systems development is that the later in the development process
that errors are detected, the more expensive they are to correct. The structured

t06.qxd 01/27/2005 08:37PM Page T6.12 EQA

T6.3 ALTERNATIVE METHODS AND TOOLS FOR SYSTEMS DEVELOPMENT T6.13

sequence of tasks and milestones in the SDLC thus makes error detection eas-
ier and saves money in the long run.

However, the SDLC does have disadvantages. By its structured nature, it is
relatively inflexible. It is also time-consuming, expensive, and discourages
changes to user requirements once they have been established. Development
managers who must develop large, enterprisewide applications therefore find it
useful to mix and match development methods and tools in order to reduce
development time, complexity, and costs. These methods and tools include pro-
totyping, rapid application development, component-based development, Web
services, integrated computer-assisted software engineering (ICASE) tools, and
object-oriented development. Although all these methods and tools can reduce
development time, none can consistently deliver in all cases. They are perhaps
best considered as options to complement or replace the SDLC or portions of it.
This section discusses each of these methods and tools.

The prototyping approach defines an initial list of user requirements, builds a
prototype system, and then improves the system in several iterations based on
users’ feedback. Developers do not try to obtain a complete set of user specifica-
tions for the system at the outset and do not plan to develop the system all at
once. Instead, they quickly develop a prototype, which either contains parts of
the new system of most interest to the users or is a small-scale working model
of the entire system. Users make suggestions for improving the prototype, based
on their experiences with it.

The developers then review the prototype with the users and use the sug-
gestions to refine the prototype. This process continues through several itera-
tions until either the users approve the system or it becomes apparent that the
system cannot meet users’ needs. If the system is viable, the developers can use
the prototype on which to build the full system. Developing screens that a user
will see and interact with is a typical use of prototyping. (See Figure T6.4 for a
model that shows the prototyping process.)

The main advantage of prototyping is that it speeds up the development
process. In addition, prototyping gives users the opportunity to clarify their
information requirements as they review iterations of the new system. Proto-
typing is especially useful in the development of decision support systems and
executive information systems, where user interaction is particularly important.

Prototyping also has disadvantages. Because it can largely replace the analy-
sis and design stages of the SDLC in some projects, systems analysts may not
produce adequate documentation for the programmers. This lack of documen-
tation can lead to problems after the system becomes operational and needs
maintenance. In addition, prototyping can result in an excess of iterations,
which can consume the time that prototyping should be saving.

Inside spiral development there is prototyping. The prototype is a model of a
system that can be used to communicate the requirements and design of that
part of the system between developers and their clients.

Joint application design (JAD) is a group-based tool for collecting user
requirements and creating system designs. JAD is most often used within the
systems analysis and systems design stages of the SDLC.

In the traditional SDLC, systems analysts interview or directly observe
potential users of the new information system individually to understand each

Prototyping

Joint Application
Design

t06.qxd 2/17/05 8:51 AM Page T6.13 EQA

T6.14 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

user’s needs. The analysts will obtain many similar requests from users, but also
many conflicting requests. The analysts must then consolidate all requests and go
back to the users to resolve the conflicts, a process that usually requires a great
deal of time. In contrast, JAD has a group meeting in which all users meet simul-
taneously with analysts. It is basically a group decision-making process (Chapter 10)
and can be computerized or done manually. During this meeting, all users jointly
define and agree upon systems requirements. This process saves a tremendous
amount of time. e-JAD is an extension of JAD whereby the group meeting is
done remotely using groupware software.

The JAD approach to systems development has several advantages. First, the
group process involves many users in the development process while still sav-
ing time. This involvement leads to greater support for the new system and can
produce a system of higher quality. This involvement also may lead to easier
implementation of the new system and lower training costs.

The JAD approach also has disadvantages. First, it is very difficult to get all
users to the JAD meeting. For example, large organizations may have users lit-
erally all over the world. Second, the JAD approach has all the problems caused
by any group process (e.g., one person can dominate the meeting, some par-
ticipants may not contribute in a group setting). To alleviate these problems,
JAD sessions usually have a facilitator, who is skilled in systems analysis and
design as well as in managing group meetings and processes. Also, the use of
groupware (such as GDSS) can help facilitate the meeting.

Determine conceptual information model and
detail requirements.

Develop initial relational database using data
modeling and procedures.

Develop operational prototype, data structure,
formal reports, and ad hoc reporting.

Revise prototype as needed by:
• adding entities
• changing data structures
• adding data items
• updating data dictionary
• adding software tools
• enhancing input and output capabilities

Demonstrate prototype to users and have
them use it on real problems.

Continue with SDLC.

Is
prototype

satisfactory?

No

Yes

FIGURE T6.4 A model of
the prototyping process.

t06.qxd 01/27/2005 08:37PM Page T6.14 EQA

T6.3 ALTERNATIVE METHODS AND TOOLS FOR SYSTEMS DEVELOPMENT T6.15

Rapid application development (RAD) is a systems development method
that can combine JAD, prototyping, and integrated CASE tools (described
next) to rapidly produce a high-quality system. Initially, JAD sessions are used
to collect system requirements, so that users are intensively involved early on.
The development process in RAD is iterative, similar to prototyping, in which
requirements, designs, and the system itself are developed with sequential
refinements. However, RAD and prototyping use different tools. Prototyping
typically uses specialized languages, such as fourth-generation languages (4GLs),
Web-based development tools, and screen generators; RAD uses ICASE tools
(discussed next) to quickly structure requirements and develop prototypes. As
the prototypes are developed and refined, users review them in additional JAD
sessions. RAD produces functional components of a final system, rather than lim-
ited-scale versions. For more details, see Figure T6.5. The figure also compares
RAD to SDLC.

Rapid application development (RAD) methodologies and tools make it pos-
sible to develop systems faster, especially systems where the user interface is an
important component. RAD can also improve the process of rewriting legacy
applications. An example of how quickly experienced developers can create
applications with RAD tools is provided next.

Blue Cross & Blue Shield Develops an Award-
Winning Application Using RAD A Y2K problem without a solution led to the
development of an innovative customer-service application in less than a year at
Blue Cross & Blue Shield of Rhode Island (BCBSRI). The new system is based on
an internally developed architecture that the Application Development Trends’
2000 Innovator Awards judges lauded as modular and flexible enough to easily
allow for system upgrades and the incorporation of new technology.

BCBSRI decided in mid-1998 to build a new customer-service system, a
mission-critical application that monitors and records communications with poli-
cyholders. The internal work on the project began in January 1999 after the de-
velopment plan and blueprint were validated by outside consultants.

The development team adhered to a phased-rollout approach and rapid ap-
plication development (RAD) methodology. Developers used several productivity

E X A M P L E :

Rapid Application
Development

Planning Analysis Design

Development
Requirements

Iterative
Development

JAD

Design

Develop

Test
User Review

Build

Traditional Development

RAD

Compress

Test Deploy

FIGURE T6.5 A rapid
prototyping development
process versus SDLC.
[Source: datawarehouse-
training.com/Methodologies/
rapid-application-development.]

t06.qxd 2/17/05 8:51 AM Page T6.15 EQA

T6.16 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

tools (including the Sybase EAServer, Sybase PowerBuilder, and Riverton HOW),
as well as performance monitoring techniques and heavy user involvement to
ensure the quality of the system throughout its life cycle. By September 1, 1999,
the application was available to more than a hundred Windows 98-based clients.
Since then, the customer-service unit has averaged about 1800 daily calls and
more than 20,000 transactions a day over the system.

By early 2000, the new customer-service system had already saved the com-
pany $500,000 and produced boosts in user productivity, significant strides in
system performance, and increased data accuracy. The integration, power, and
scalability of the BCBSRI solution are truly exemplary.

Sources: Condensed from M. W. Bucken, “2000 Innovator Awards: Blue Cross & Blue Shield,”
Application Development Trends Magazine, April 2000, adtmag.com/article.asp=2692 (accessed July 2003);
and from paper published at adtmag.com (April 2000).

Extreme programming (XP) is an attempt to combat the chaotic tendencies
of RAD while still maintaining the flexibility to respond to changing business
needs. It advocates rigorous and automated testing and simplicity of code. The
team should never make assumptions about future requirements and should
constantly reevaluate old code in light of new requirements. Its goal is to release
software as often as possible in order to test it with real users. Extreme pro-
gramming creates a “one feature at a time” mentality that slowly grows the
software and reduces risk by ensuring that a project will have a sufficient degree
of stable functionality at any given time.

Computer-aided software engineering (CASE) is a development approach
that uses specialized tools to automate many of the tasks in the SDLC. The tools
used to automate the early stages of the SDLC (systems investigation, analysis,
and design) are called upper CASE tools. The tools used to automate later stages
in the SDLC (programming, testing, operation, and maintenance) are called
lower CASE tools. CASE tools that provide links between upper CASE and lower
CASE tools are called integrated CASE (ICASE) tools. Some CASE tools can
even work backward, modifying the model after modifying the coding. See, for
example, IBM’s Rational Rose.

CASE tools provide advantages for systems developers. These tools can pro-
duce systems with a longer effective operational life that more closely meet user
requirements. CASE tools can speed up the development process and result in sys-
tems that are more flexible and adaptable to changing business conditions. Finally,
systems produced using CASE tools typically have excellent documentation.

On the other hand, CASE tools can produce initial systems that are more
expensive to build and maintain. CASE tools do require more extensive and
accurate definition of user needs and requirements. Also, CASE tools are diffi-
cult to customize and may be difficult to use with existing systems.

Object-oriented development is based on a fundamentally different view of
computer systems than that found in traditional SDLC development
approaches. Traditional approaches provide specific step-by-step instructions in
the form of computer programs, in which programmers must specify every pro-
cedural detail. These programs usually result in a system that performs the orig-
inal task but may not be suited for handling other tasks, even when the other
tasks involve the same real-world entities. For example, a billing system will

Extreme
Programming

Integrated
Computer-Assisted

Software
Engineering Tools

Object-Oriented
Development

t06.qxd 2/17/05 4:47 PM Page T6.16 EQA

T6.3 ALTERNATIVE METHODS AND TOOLS FOR SYSTEMS DEVELOPMENT T6.17

handle billing but probably will not be adaptable to handle mailings for the
marketing department or generate leads for the sales force, even though the
billing, marketing, and sales functions all use similar data (e.g., customer
names, addresses, and purchases). An object-oriented (OO) system, on the
other hand, begins not with the task to be performed, but with the aspects of
the real world that must be modeled to perform that task. Therefore, in the
example above, if the firm has a good model of its customers and its interac-
tions with them, this model can be used equally well for billings, mailings, and
sales leads.

The object-oriented (OO) approach to software development offers many
advantages:

● It reduces the complexity of systems development and leads to systems that
are easier and quicker to build and maintain, because each object is relatively
small and self-contained.

● It improves programmers’ productivity and quality. Once an object has been
defined, implemented, and tested, it can be reused in other systems.

● Systems developed with the OO approach are more flexible. These systems
can be modified and enhanced easily by changing some types of objects or by
adding new types.

● The OO approach allows the systems analyst to think at the level of the real-
world systems (as users do), rather than at the level of the programming lan-
guage. The basic operations of an enterprise change much more slowly than
the information needs of specific groups or individuals. Therefore, software
based on generic models (which the OO approach is) will have a longer life
span than programs written to solve specific, immediate problems.

● The OO approach is also ideal for developing Web applications.

● The OO approach depicts the various elements of an information system in
user terms (i.e., business or real-world terms), and therefore, the users have
a better understanding of what the new system does and how it meets its ob-
jectives.

The OO approach does have some disadvantages: OO systems, especially
those written in Java, generally run more slowly than those developed in other
programming languages. Also, many programmers have little skill and experi-
ence with OO languages, necessitating retraining.

An object-oriented development environment provides a framework that
encourages designers to think in object-oriented terms, to design systems with
conceptual integrity and clear separation of function from internal implemen-
tation. It also provides substantial assistance to the developer in automating the
production of executable software from the object-oriented model. Interface
logic, and the underlying middleware, are generated by the component-based
development environment.

It is hard to “mine” design patterns from earlier work, and once such pat-
terns have been mined, it is hard to catalog and reuse them. Reuse is hard
because the pattern-reuse technique is an emerging and little-known discipline
with precious few tools to support it. Although some developers are success-
fully using the pattern-reuse technique (Best, 1995, and Schmidt 1999), there
is much untapped potential here that could be realized with greater awareness,
better tools, and available repositories of reusable patterns.

t06.qxd 2/17/05 8:51 AM Page T6.17 EQA

OBJECT-ORIENTED ANALYSIS AND DESIGN. The development process for an
object-oriented system begins with a feasibility study and analysis of the exist-
ing system. Systems developers identify the objects in the new system—the fun-
damental elements in OO analysis and design. Each object represents a tangible
real-world entity, such as a customer, bank account, student, or course. Objects
have properties. For example, a customer has an identification number, name,
address, account number(s), and so on. Objects also contain the operations that
can be performed on their properties. For example, customer objects’ operations
may include obtain-account-balance, open-account, withdraw-funds, and so on.

Therefore, object-oriented analysts define all the relevant objects needed for
the new system, including their properties (called data values) and their operations
(called behaviors). They then model how the objects interact to meet the objectives
of the new system. In some cases, analysts can reuse existing objects from other
applications (or from a library of objects) in the new system, saving time spent
coding. In most cases, however, even with object reuse, some coding will be nec-
essary to customize the objects and their interactions for the new system.

Comparison of the various development methods, including those covered
in Chapter 14, is shown in Table T6.1.

An information systems development methodology (ISDM) can be
defined as a collection of procedures, techniques, tools, and documentation aids
that help systems developers in their efforts to implement a new information
system. The methodology consists of phases, themselves consisting of sub-
phases, which guide the systems developers in their choice of the techniques
that might be appropriate at each stage of the project, and also help them plan,
manage, control, and evaluate information systems projects.

A methodology is a set of practices and procedures, with supporting templates
and knowledge bases, that systematically organizes the development process. (A
methodology is different from method.) A methodology should specify the train-
ing needs of the users and specifically address the critical issue of development
philosophy. The objectives of using a methodology are: (1) a better end prod-
uct, (2) a better development process, and (3) a standardized process.

Different methodologies make different assumptions about the business and
work environments of the project, and knowing each of their pros and cons
allows a team to pick the most efficient methodology for its particular project.
Some methodologies emphasize testing, some documentation; others stress code
reusability. Certain methodologies are better suited for projects with tight dead-
lines or unclear and changing requirements.

Executing against a methodology reduces the knowledge and experience
required by a development team. However, the team needs to learn the rules
and practices of a specific methodology.

Methodologies can be classified into process-oriented, blended, object-
oriented, rapid development, people-oriented, organizational-oriented, and
frameworks. Examples of each are shown in Table T6.2.

TECHNIQUES AND TOOLS FEATURES IN EACH METHODOLOGY. A technique is a
way of doing a particular activity in the information systems development
process, and any particular methodology may recommend techniques to carry
out many of these activities. Techniques include holistic, data, process, object-
oriented, project management, organizational, and people.

Information
Systems

Development
Methodologies,

Techniques, and
Tools

T6.18 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

t06.qxd 2/17/05 8:51 AM Page T6.18 EQA

T6.19

TABLE T6.1 Advantages and Disadvantages of Systems Acquisition Methodologies

Traditional Systems Development (SDLC)
● Forces staff to be systematic by going through

every step in a structured process.
● Enforces quality by maintaining standards.
● Has lower probability of missing important issues

in collecting user requirements.

End-User Development
● Bypasses the information systems department and

avoids delays.
● User controls the application and can change it as

needed.
● Directly meets user requirements.
● Increased user acceptance of new system.
● Frees up IT resources and may reduce application

development backlog.

External Acquisition (Buy or Lease)
● Software exists and can be tried out.
● Software has been used for similar problems in

other organizations.
● Reduces time spent for analysis, design, and pro-

gramming.
● Has good documentation that will be maintained.

Advantages Disadvantages

Joint Application Development (JAD)
● Easy for senior management to understand.
● Provides needed structure to the user requirements

collection process.

Prototyping
● Helps clarify user requirements.
● Helps verify the feasibility of the design.
● Promotes genuine user participation in the devel-

opment process.
● Promotes close working relationship between sys-

tems developers and users.
● Works well for ill-defined problems.
● May produce part of the final system.

Rapid Application Development (RAD)
● Active user involvement in analysis and design

stages.
● Easier implementation due to user involvement.

Object-Oriented Development (OO)
● Integration of data and processing during analysis

and design should lead to higher-quality systems.
● Reuse of common objects and classes makes devel-

opment and maintenance easier.

● May produce excessive documentation.
● Users are often unwilling or unable to study the

specifications they approve.
● Takes too long to go from the original ideas to a

working system.
● Users have trouble describing requirements for a

proposed system.

● May encourage inadequate problem analysis.
● Not practical with large number of users.
● User may not give up the prototype when the

system is completed.
● May generate confusion about whether or not the

information system is complete and maintainable.
● System may be built quickly, which may result in

lower quality.

● Difficult and expensive to get all people to the
same place at the same time.

● Potential to have dysfunctional groups.

● System often narrowly focused, which limits
future evolution, flexibility, and adaptability to
changing business conditions.

● System may be built quickly, which may result in
lower quality.

● Very difficult to train analysts and programmers
on the OO approach.

● Limited use of common objects and classes.

● Creates lower-quality systems because an ama-
teur does the programming.

● May eventually require consulting and mainte-
nance assistance from the IT department.

● System may not have adequate documentation.
● Poor quaility control.
● System may not have adequate interfaces to

existing systems.

● Controlled by another company that has its own
priorities and business considerations.

● Package’s limitations may prevent desired busi-
ness processes.

● May be difficult to get needed enhancements if
other companies using the package do not need
those enhancements.

● Lack of intimate knowledge about how the soft-
ware works and why it works that way.

t06.qxd 01/27/2005 09:28PM Page T6.19 EQA

T6.20 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

Each technique may involve the use of one or more tools that represent
some of the artifacts used in information systems development. Tools include
groupware (e.g., GroupSystems), Website development (e.g., DreamWeaver),
drawing (e.g., Microsoft Visio 2003), project management (e.g., Microsoft Pro-
ject 2003), and database management (e.g., Microsoft Access). Tools used in
development can be ranged from simple automation (e.g., a drawing program
like Visio) to fully featured modeling tools like Rational Rose, which is capable
of interfacing to a repository through XML to share data with other tools in a
cooperative total development environment.

Several other system development methods exist, especially for e-business
and Web-based applications. Most notable are component-based development
and Web Service, the topics of our next section.

TABLE T6.2 Examples of Development Methodologies

Process-oriented Structured Analysis, Design, and Imple-
mentation of Information Systems
(STRADIS), Yourdon Systems Method
(YSM), and Jackson Systems Develop-
ment (JSD)

Blended Structured Systems Analysis and
Design Method (SSADM), Merise,
Information Engineering IE, and Welti
ERP Development

Object-oriented Object-Oriented Analysis (OOA), and
Rational Unified Process (RUP)

Rapid development James Martin’s RAD, Dynamic Systems
Development Method (DSDM),
Extreme Programming (XP), and Web
IS Development Methodology
(WISDM)

People-oriented Effective Technical and Human Imple-
mentation of Computer-Based
Systems (ETHICS), KADS, and Com-
monKADS

Organizational-oriented Soft Systems Methodology (SSM_, Infor-
mation Systems Work and Analysis of
Changes (ISAC), Process Innovation
(PI), Projects In Controlled Environ-
ments (PRINCE), and Renaissance

Frameworks MultiView, Strategic Options Develop-
ment and Analysis (SODA), Capability
Maturity Model (CMM), and
EuroMethod

Classification Examples

T6.4 COMPONENT-BASED DEVELOPMENT AND WEB SERVICES

Component-Based
Development

Object-oriented development, discussed in Section T6.3, has its downside: Busi-
ness objects, though they represent things in the real world, can become unwieldy
when they are combined and recombined in large-scale commercial applications.

t06.qxd 01/27/2005 09:28PM Page T6.20 EQA

T6.4 COMPONENT-BASED DEVELOPMENT AND WEB SERVICES T6.21

What is needed, instead, are suites of business objects that provide major chunks
of application functionality (e.g., preprogrammed workflow, order placing) that
can be “snapped together” to create complete business applications.

This approach is embodied in component-based development (CBD),
the upcoming evolutionary step beyond object-oriented development. CBD uses
preprogrammed components to develop applications. According to Szyperski
(1998), a component is a unit of composition with contractually specified inter-
faces and explicit context dependencies. Context dependencies are specified by
starting the required interfaces and the acceptable platforms. For the purposes
of independent deployment, a component needs to be a binary unit.

A component’s functionality can be accessed only through its interfaces.
Components must have software “plug points” that fit into sockets provided by
a component execution environment. The component execution environment
is required to provide run-time technical infrastructure services and to hide low-
level technology issues from the business solution developer.

Rather than synchronous interactions between components, a component
invokes an operation in another component by sending a message. Where inte-
gration is needed across architectural domains, loosely coupled integration is
more appropriate than a tightly coupled arrangement. In a tightly coupled inte-
gration, a component needs to know the name of the service it wants to call.
In a loosely coupled integration with a message broker, an application makes its
request by sending a message, in proper standard format, to the message bro-
ker. Based on the message content, the message broker forwards the message
to the application that accepts the message and acts upon it.

KEY CHARACTERISTICS OF COMPONENTS IN COMPONENT-BASED DEVELOP-
MENT. Components used in distributed computing need to possess several key
characteristics to work correctly, and they can be viewed as an extension of the
object-oriented paradigm. The two main traits borrowed from the world of
object-oriented technology are encapsulation and data hiding.

Components encapsulate the routines or programs that perform discrete func-
tions. In a component-based program, one can define components with various
published interfaces. One of these interfaces might be, for example, a data-
comparison function. If this function is passed to two data objects to compare,
it returns the results. All manipulations of data are required to use the inter-
faces defined by the data object, so the complete function is encapsulated in this
object, which has a distinct interface to other systems. Now, if the function has
to be changed, only the program code that defines the object must be changed,
and the behavior of the data comparison routine is updated immediately, a fea-
ture known as encapsulation.

Data hiding addresses a different problem. It places data needed by a com-
ponent object’s functions within the component, where it can be accessed only
by specially designated functions in the component itself. Data hiding is a crit-
ical trait of distributed components. The fact that only designated functions can
access certain data items, and outside “requestors” have to query the compo-
nent, simplifies maintenance of component-oriented programs.

Examples of components include user interface icons (small), word
processing (a complete software product), a GUI, online ordering (a business
component), and inventory reordering (a business component). Search engines,

t06.qxd 2/17/05 8:51 AM Page T6.21 EQA

T6.22 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

firewalls, Web servers, browsers, page displays, and telecommunication proto-
cols are examples of intranet-based components.

Code reusability, which makes programming faster and more accurate, is
the first of several reasons for using component-based development. Others
include: support for heterogeneous computing infrastructure and platforms;
rapid assembly of new business applications for quick time-to-market; and the
ability of an application to scale. And because major software vendors are com-
mitted to component architecture, application builders can mix and match best-
of-breed solutions. For a methodology of evaluating component-based systems
see Dahanayake et al. (2003).

COMPONENT-BASED DEVELOPMENT OF E-COMMERCE APPLICATIONS. Plug-
and-play business application components can be “glued together” rapidly to
develop complex distributed applications, such as those needed for e-commerce.
Component-based EC development is gaining momentum. It is supported by
Microsoft and the Object Management Group (OMG), which have put in place
many of the standards needed to make component-based development a reality.
There are several methods that developers can use for integrating components (e.g.,
see Linthicum, 2001). A logical architecture for component-based development of
e-commerce applications can be described in layers, as shown in Figure T6.6.

THE ROLE OF COMPONENT-BASED APPROACH IN SOFTWARE REUSE. The effi-
cient development of software reuse has become a critical aspect in the overall IS
strategies of many organizations. An increasing number of companies have
reported reuse successes. The traditional reuse paradigm allows changes to the code
that is to be reused (“white-box reuse”). Component-based software development
advocates that components are reused as is (“black-box reuse”). Taking the black-
box reuse concept one step further is the idea of leveraging existing software using
Web Services (our next topic). Both component-based development and Web Ser-
vices are receiving growing interest among members of the IS community.

The major application of Web Services is systems integration. Applications need to
be integrated with databases and with other applications. Users need to interface
with the data warehouse to conduct analysis, and almost any new system needs

E-Commerce Applications

Vendor
Management

Extended Value/
Supply Chain

i-Market Customer Care

Application-
Specific

Components

Cross-
Application

Components

Common Business Objects

Distributed Object Infrastructure
Legacy Applications & Assets

Industry-
Specific

Components

FIGURE T6.6 Logical ar-
chitecture for component-
based development of
e-commerce.

Web Services in
System

Development

t06.qxd 01/27/2005 08:37PM Page T6.22 EQA

T6.4 COMPONENT-BASED DEVELOPMENT AND WEB SERVICES T6.23

to be integrated with older ones. Finally, the increase of B2B and e-business activ-
ities requires the integration of application and databases of business partners
(external integration). Because Web Services can contribute so much to systems
integration, their use is growing rapidly.

The original term for Web Services was “application services.” They are serv-
ices that are made available from a business’s server for Web users. Because of
their great interoperability and extensibility (due to the use of XML), Web Services
can be combined in a loosely coupled way in order to achieve complex operations.

Web Services simplify enterprise application integration and create new rev-
enue opportunities by enabling organizations to offer data and services to both
customers and partners. Web Services information inquiry has taken a great
stride forward because many companies are looking to automate business
processes and get products to market faster. The future of Web Services depends
on cross-platform interoperability and the creation of a security standard. The
Web Services Interoperability Organization will solve these problems.

Service-oriented architecture (SOA) is a good companion to Web Services. It
has the benefit of its capacity for rapid modification. It will become an IT archi-
tecture mainstream in the future.

BASIC CONCEPTS. There are several definitions of Web Services. Here is a typ-
ical one: Web Services are self-contained, self-describing business and con-
sumer modular applications, delivered over the Internet, that users can select
and combine through almost any device (from personal computers to mobile
phones). By using a set of shared protocols and standards, these applications
permit different systems to “talk” with one another—that is, to share data and
services—without requiring human beings to translate the conversations.

Specifically, a Web Service fits the following three criteria: (1) It is able to
expose and describe itself to other applications, allowing those applications to
understand what the service does. (2) It can be located by other applications
via an online directory, if the service has been registered in a proper directory.
(3) It can be invoked by the originating application by using standard protocols.

Web Services have great potential because they can be used in a variety of
environments (over the Internet, on an intranet inside a corporate firewall; on
an extranet set up by business partners) and can be written using a wide vari-
ety of development tools. They can be made to perform a wide variety of tasks,
from automating business processes, to integrating components of an enter-
prisewide system, to streamlining online buying and selling. Key to the prom-
ise of Web Services is that, in theory, they can be used by anyone, anywhere,
any time, using any hardware and any software, as long as the modular soft-
ware components of the services are built using a set of key protocols.

The Key Protocols. Web Services are based on a family of key protocols
(standards). These protocols are the building blocks of the Web Services plat-
forms. The major protocols are:

● XML. Extensible Markup Language makes it easier to exchange data among a
variety of applications and to validate and interpret such data. An XML doc-
ument describes a Web Service and includes information detailing exactly
how the Web Service can be run.

● SGML. Standard Generalized Markup Language (SGML) is a general standard for
the Internet programming languages. It is known informally as “the mother

t06.qxd 2/17/05 8:51 AM Page T6.23 EQA

T6.24 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

of all Web programming languages.” It sets standards that are independent of
any type of computer or of any operating system that sends or retrieves doc-
uments. It was developed and standardized by ISO in 1986. It does not spec-
ify any formats but rather sets the rules. HTML, XML, and WML are its
products.

● XML. XML is a WWW Consortium (W3C) standard that translates a com-
pany’s business documents into a format understandable by another company.
It is the universal format for structured documents and data on the Web. It is
intended for open computer-to-computer communications, as it permits the
efficient integration of e-commerce solutions across both the Internet and pri-
vate B2B networks.

XML lets developers define the tags used in terms of the information that
tagged elements contain, rather than their appearance. XML code alone will
not display anything on the computer screen: Only the combination of the
HTML code and XML code will serve to display lists and tell the browser
what the information is.

According to Microsoft, XML Web Services are the fundamental building
blocks in the move to distributed computing on the Internet. Open standards
and the focus on communication and collaboration among people and appli-
cations have created an environment in which XML Web Services are be-
coming the platform for application integration. Applications are constructed
using multiple XML Web Services from various sources that work together,
regardless of where they reside or how they were implemented. One of the
primary advantages of the XML Web Services architecture is that it allows
programs written in different languages on different platforms to communi-
cate with each other in a standards-based way.

Industry leaders in accounting, financial reporting, and accounting soft-
ware are working with firms such as Microsoft and IBM to develop a com-
mon XML standard for financial reporting. This major initiative, called
Extensible Business Reporting Language (XBRL), is an XML-based financial
reporting language that supports the transmission of financial reports in a
format that can be processed automatically by computers.

● SOAP. Simple Object Access Protocol is a set of rules that facilitate XML exchange
between network applications. SOAP defines a common standard that allows
different Web Services to interoperate (i.e., it enables communications, such
as allowing Visual Basic clients to access Java server). It is a platform-
independent specification that defines how messages can be sent between
two software systems through the use of XML. These messages typically fol-
low a Request/Response pattern (computer-to-computer).

● WSDL. The Web Services Description Language is used to create the XML docu-
ment that describes tasks performed by Web Services. It actually defines the
programmatic interface of the Web Services. Tools such as VisualStudio.Net
automate the process of accessing the WSDL, read it, and code the applica-
tion to reference the specific Web Service.

● UDDI. Universal Description, Discovery, and Integration allows for the creation of
public or private searchable directories of Web Services. It is the registry of
Web Services descriptions. UDDI was developed by the Organization for the
Advancement of Structured Information Systems (OASIS), which was
formed by IBM, Microsoft, Sue, and others.

t06.qxd 2/17/05 8:51 AM Page T6.24 EQA

T6.4 COMPONENT-BASED DEVELOPMENT AND WEB SERVICES T6.25

● Security protocols. Several security standards are in development such as Sec-
urity Assertion Markup Language (SAML), which is a standard for authentica-
tion and authorization. Other security standards are XML signature, XML
encryption, XKMS, and XACML.

See Cerami (2002) for a list of other protocols that are under development.
Other Web Services standards include XML Schema Definition Language,

Extensible Stylesheet Language (XSL), and Xlink.
Major Web Services development platforms include Microsoft.NET, Sun’s

Java Enterprise systems, BEA WebLogic server, and IBM WebSphere.
W3C has worked on the infrastructure of Web Services to define the archi-

tecture and the core technologies for Web Services. It started XML Protocol
Activity in September 2000 to address the need of an XML-based protocol for
application-to-application messaging. In January 2002, Web Services Activity
was launched for designing a set of technologies fitting in the Web architec-
ture in order to lead Web Services to their full potential. It consists of three
working groups (XML Protocol Working Group, Web Services Description
Working Group, and Web Services Choreography Working Group), one inter-
est group (Semantic Web Services Interest Group), and one coordination group
(Web Services Coordination Group). Web Services Resource Guide can be
found at eweek.com/slideshow_viewer/0,2393,1=&s=1590&a=31201&po=1,00.asp
and at gotdotnet.com.

THE NOTION OF WEB SERVICES AS COMPONENTS. Traditionally, people view
information systems, including the Web, as relating to information (data)
processing. Web Services enable the Web to become a platform for applying
business services as components in IT applications. For example, user authenti-
cation, currency conversion, and shipping arrangement are components of broad
business processes or applications, such as e-commerce ordering or e-procure-
ment systems. (For further discussion, see Stal, 2002.)

The idea of taking elementary services and gluing them together to create new
applications is not new. As we saw earlier, this is the approach of component-based
development. The problem is that earlier approaches were cumbersome and expen-
sive. According to Tabor (2002) existing component-integration technologies exhibit
problems with data format, data transmission, interoperability, inflexibility (they are
platform specific), and security. Web Services offer a fresh approach to integration.
Furthermore, business processes that are comprised of Web Services are much eas-
ier to adapt to changing customer needs and business climates than are “home-
grown” or purchased applications (Seybold, 2002).

Table T6.3 lists the advantages and some limitations of Web Services.

A WEB SERVICES EXAMPLE. As a simple example of how Web Services oper-
ate, consider an airline Web site that provides consumers with the opportunity
to purchase tickets online. The airline recognizes that customers also might want
to rent a car and reserve a hotel as part of their travel plans. The consumer
would like the convenience of logging onto only one system rather than three,
saving time and effort. Also, the same consumer would like to input personal
information only once.

The airline does not have car rental or hotel reservation systems in place.
Instead, the airline relies on car rental and hotel partners to provide Web Services

t06.qxd 2/17/05 8:51 AM Page T6.25 EQA

T6.26 TECHNOLOGY GUIDES A TECHNICAL VIEW OF SYSTEM ANALYSIS AND DESIGN

access to their systems. The specific services the partners provide are defined by
a series of WSDL documents. When a customer makes a reservation for a car or
hotel on the airline’s Web site, SOAP messages are sent back and forth in the
background between the airline’s and the partners’ servers. In setting up their
systems, there is no need for the partners to worry about the hardware or oper-
ating systems each is running. Web Services overcome the barriers imposed by
these differences. An additional advantage for the hotel and car reservation sys-
tems is that their Web Services can be published in a UDDI so that other busi-
nesses can take advantage of their services.

TABLE T6.3 Web Services Advantages and Limitations

● Greater interoperability and lower costs, due to
universal, open, text-based standards.

Advantages Disadvantages

● Promote modular programming and reuse of
existing software.

● Enable software running on different platforms to
communicate with each other.

● Operate on existing Internet infrastructure, so are
easy and inexpensive to implement.

● Can be implemented incrementally.

● Standards still being defined.
● Require programming skill to implement.

● Security: Applications may be able to bypass
security barriers.

Sources: Compiled from E. M. Dietel et al., Web Services Technical Introduction (Upper Saddle River, NJ: Prentice-Hall, 2003) and from
C. Shirky, Planning for Web Services (Cambridge, MA: O’Reilly and Associates, 2002).

Allen, P., Realizing e-Business with Components. Boston: Addison
Wesley, 2000.

Allen, P., and S. Frost, Component-Based Development for Enterprise
Systems. Cambridge, U.K.: Cambridge University Press, 1998.

Avison, D. G., and G. Fitzgerald, Information Systems Development:
Methodologies, Techniques and Tools, 3rd ed. New York: McGraw-Hill,
2002.

Bucken, M. W., “2000 Innovator Awards: Blue Cross & Blue
Shield,” Application Development Trends Magazine, April 2000,
adtmag.com/article.asp=2692 (accessed July 2003).

Carter, J. A., “Developing e-Commerce Systems.” Upper Saddle
River, N.J.: Prentice Hall, 200x. computerworld.com/managementtopics/
management/story/0,10801,90409,00.html.eweek.com/slideshow–viewer/
0,2393,1 &s 1590&a 31201&po 1,00.asp.

Cerami, E. Web Services Essentials. Cambridge, MA: O’Reilly and As-
sociates, 2002.

Dahanayake, A., et al. “Methodology Evaluation Framework for
Component-Based System Development.” Journal of Database Man-
agement, March 2003.

Dietel, E. M., et al. Web Services Technical Introduction. Upper Saddle
River, NJ: Prentice-Hall, 2003.

Glover, S. M., e-Business: Principles and Strategies for Accountants, 2nd
ed. Upper

Koontz, C. “Develop a Solid E-Commerce Architecture.” e-Business
Advisor, January 2000.

Linthicum, D. S. B2B Application Integration: e-Business-Enable Your
Enterprise. Boston: Addison Wesley, 2001.

Seybold, P. An Executive Guide to Web Services. Boston, MA: Patricia
Seybold Group (psgroup.com), 2002.

Shirky, C. Planning for Web Services. Cambridge, MA: O’Reilly and
Associates, 2002.

Stal, M. “Web Services: Beyond Component-Based Computing.”
Communications of the ACM, October 2002.

Tabor R. Microsoft.Net XML Web Services. Indianapolis, IN: SAMS,
2002.

REFERENCES

t06.qxd 2/17/05 8:51 AM Page T6.26 EQA

